Welcome to the Automated Infrastructure Deployment Tool! Did you ever wonder how to obtain a working, multi-user analysis environment for your students or your group? This page will guide you step by step in the setup of a JupyterHub (JH) hosted on a Cloud instance, and will provide an overview of few notebooks solutions, to implement both standalone or in combination with JH.
Here you have an advanced tool that allows anyone to deploy his/her own JH. Why anyone? Because no particular skills are required, it is sufficient to have a basic knowledge of the linux bash terminal, and access to a cloud provider onto which host the whole infrastructure.
Now, let’s dive into the fundamental features of the tool: (if you don’t care about the theory, just jump to the dashboard and start deploying!)
The deployment process relies on two fundamental services: Docker and Terraform. Docker provides the modular layout of the infrastructure, enabling most of the above-mentioned features; together with agility and flexibility, thanks to the containerization, Docker also provides lightness to the whole environment. On the other hand, Terraform ensures the automation of the JH deployment. Below it is shown a flowchart of the deployment process.
Jupyter notebooks are the core of the analysis effort of ATLAS Open Data. Here we present a notebook built on top of the latest scipy version, in which we embed the installation of the ROOT framework used at CERN, available in both python and C++ kernels. Other versions of the notebook are in development, in order to gradually increase the analysis potential of this tool. You can run the notebook both standalone or in combination with the JH infrastructure descripted above. Try it out on your pc by simply running the following docker command:
docker run -it --rm -p8888:8888 atlasopendata/root_notebook:latest
Then access the notebook via the browser by pasting the url provided by the terminal. It should be something like (The token will be different for you)
To access the notebook, open this file in a browser:
file:///home/jovyan/.local/share/jupyter/runtime/nbserver-15-open.html
Or copy and paste one of these URLs:
http://4c61742ed77c:8888/?token=34b7f124f6783e047e796fea8061c3fca708a062a902c2f9
or http://127.0.0.1:8888/?token=34b7f124f6783e047e796fea8061c3fca708a062a902c2f9
ATLAS Open Data also provides a virtual machine, which allows you to test the 13 TeV ATLAS Open Data on your own host machine.
Take a closer look to our resources:
Container repository | Virtual Machine |
---|---|
Just select the cloud provider that tickles your fancy (i.e. of which you actually have a working account), and follow the instructions!
AWS instance | OpenStack@CERN instance | Google Cloud instance |
---|---|---|